

Overview of NASA's Environmentally Responsible Aviation (ERA) Project A NASA Aeronautics Project focused on midterm environmental goals

National Plan for Aeronautics R&D Context for the ERA Project

- Mobility, Security/Defense, Safety, Energy & Environment
 - Enable growth in Mobility/Aviation/Transportation
 - Dual use with Security/Defense
 - Safety and Cost Effectiveness are pervasive factors
- Specific and Quantifiable Energy and Environment goals
 - Energy Diversity
 - use of alternative fuels, not creation of alternative fuels
 - Energy Efficiency
 - Environmental Impact
 - reduction of impacts, not reducing scientific uncertainties of impacts

NASA System Level Metrics

.... technology for dramatically improving noise, emissions, & performance

CORNERS OF THE TRADE SPACE	N+1 = 2015*** Technology Benefits Relative To a Single Aisle Reference Configuration	N+2 = 2020*** Technology Benefits Relative To a Large Twin Aisle Reference Configuration	N+3 = 2025*** Technology Benefits
Noise (cum below Stage 4)	-32 dB	-42 dB	-71 dB
LTO NO _x Emissions (below CAEP 6)	-60%	-75%	better than -75%
Performance: Aircraft Fuel Burn	-33%**	-50%**	better than -70%
Performance: Field Length	-33%	-50%	exploit metro-plex* concepts

^{***}Technology Readiness Level for key technologies = 4-6

ERA Approach

- Focused on N+2 Timeframe Fuel Burn, Noise, and NO_x System-level Metrics
- Focused on Advanced Multi-Discipline Based Concepts and Technologies
- Focused on Highly Integrated Engine/Airframe Configurations for Dramatic Improvements

^{**} RECENTLY UPDATED. Additional gains may be possible through operational improvements

^{*} Concepts that enable optimal use of runways at multiple airports within the metropolitan area

ERA Project Framework

Vision

- ERA will expand the viable and well-informed trade space for vehicle design decisions enabling simultaneous realization of National noise, emissions, and performance goals
- ERA will enable continued aviation growth while reducing or eliminating adverse effects on the environment

Mission

- Perform research to explore/assess the feasibility, benefits, interdependencies, and risks of vehicle concepts and enabling technologies identified as having potential to mitigate the impact of aviation on the environment
- Transfer knowledge outward to the aeronautics community, and inward to NASA fundamental aeronautics projects

Scope

- N+2 vehicle concepts and enabling technologies
- System/subsystem research in relevant environments

The Way Forward

- System research to bridge the gap between fundamental research (TRL 1-4) and product prototyping (TRL 7)
 - Identify vehicle concepts with the potential to simultaneously meet
 National goals for noise, emissions, and fuel burn in the N+2 timeframe
 - Understand the concept and technology <u>feasibility/risk</u> vs potential benefits
 - Understand the concept and technology <u>trades and interdependencies at high fidelity in relevant environments</u>
 - Determine safety implications of new technologies and configurations
- Technology investments guided by
 - matured in fundamental program and worthy of more in-depth evaluation at system level in relevant environment
 - systems analysis indicates most potential for contributing to simultaneous attainment of N+2 goals
 - identified through stakeholder input as having potential for contributing to simultaneous attainment of N+2 goals

ERA Project Flow And Key Decision Point for Phase 2

Technical input from Fundamental Programs, NRAs, Industry, Academia, Other Gov't Agencies

ERA Project Phase 1 Investigations

Technology enablers - broadly applicable

- less visible than configuration features
- applicable to alternate and advanced conventional configurations
- Noise: continuous mold lines, increasing ducted BPR, boundary layer ingestion
- Emissions: fuel-flexible, low NOx combustion, reduced fuel burn technologies
- Fuel Burn: lightweight structure, reduced drag, and reduced SFC, open rotor

Addressing Noise Reduction

Airframe Noise

Addressing high-lift systems and landing gear

Propulsion Noise

Addressing fan, core, and jet noise

Open Rotor

UHB Turbofans

- Twin High Bypass Ratio Jet Simulators
- Simplified Fan Noise Simulator
- · Instrumentation and Processing for Low Noise Levels

<u>Propulsion Airframe Aeroacoustics</u> Addressing airframe/propulsion interaction - shielding

Addressing Fuel Burn (CO₂ Emissions)

DRAG REDUCTION via Laminar Flow

Addressing concepts & barriers to achieving practical laminar flow on transport a/c

HLFC - revisit crossflow expt - understand system weight

Open Rotor Propulsion Rig

Pultruded Rod Stitched Efficient Unitized Structure PRSEUS Test Region Powered halfspan model test PSP Results

Moving from "safe-life" to "fail-safe" design

Rod

SFC REDUCTION via UHB

Addressing multidisciplinary challenges from subcomponent to installation to achieve ultra-high by-pass ratio

Addressing Reduced LTO NO_x Emissions

Low NOx combustor concepts for high OPR environment

Increase thermal efficiency without increasing NOx emissions

NASA Injector Concepts

- Partial Pre-Mixed
- Lean Direct Multi-Injection

Enabling Technology

- lightweight CMC liners
- advanced instability controls

- Improved fuel-air mixing to minimize hot spots that create additional NOx
- Lightweight liners to handle higher temperatures associated with higher OPR
- Fuel flexibility to accommodate emerging alternative fuels
- Coordinating with DoD Programs

ERA Project - Initial NRAs Broad-based input to the ERA Project

- Topic 1 N+2 Advanced Vehicle Concepts Pre-Proposal Meeting Feb. 19
 - Concept development and technology roadmaps
 - Scope key system Investigations to inform Phase 2 decisions
- Topic 2 Low NOx Combustors Selections made (January 2010)
 - Concept development and technology roadmaps
 - Initial flametube experiments
 - Inform Phase 2 decisions
- <u>Topic 3 Quick-Start System Research Investigations</u> <u>Pre-Proposal Meeting</u>, Feb. 19:
 - Quickstart NRA 1: PAI and PAA Study
 - Quickstart NRA 2: Wing Design with Flight Weight HLFC Systems
 - Complementary to Phase 1 investigations
 - Early technical progress/results toward ERA goals
 - Inform Phase 2 decisions

Topic 2: ERA Combustor NRA: N+2 Advanced Low Nox Combustor Technologies

Goals:

- Expand the viable and well-informed trade space for vehicle design decisions
- Enable simultaneous realization of national noise, emissions, and performance goals.

NRA Scope:

- Identify new combustor concepts capable of meeting N+2 NOx goals by:
 - Conducting initial screening experiments,
 - Developing enabling technologies,
 - Generating additional technology development roadmaps, and
 - Providing a multi-injector sector for evaluation at NASA at realistic engine conditions.

Selections:

- GE-Aviation and Pratt & Whitney have been selected and are in negotiations for the NRA contract.
- Award is pending.
- An announcement will be made at the time of award.

Topic 2: ERA Combustor NRA: N+2 Advanced Low Nox Combustor Technologies

- Desired outcome of combustor design & testing:
 - Meet LTO NOx goal of 75% reduction from CAEP 6 in screening tests
 - Meet LTO NOx goal of 75% reduction from CAEP 6 in multi-injector sector tests at realistic N+2 engine conditions
 - Exhibit cruise NOx reduction compared to state-of-the-art capability for an engine with 50,000 to 60,000 lbs thrust
 - Result in no increase of carbon monoxide, unburned hydrocarbons or smoke, and particulates relative to CAEP 6 levels
 - Exhibit fuel flexibility with alternative fuel
 - Demonstrate acceptable combustion stability over the complete operating range

